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The thermal convectiGe instability of a nematic layer aligned perpendicular to 
horizontal plates displays original characteristics, due to the coupling of the nematic 
distortion with the temperature gradient ; in particular the adverse temperature 
gradient threshold ATc can be modified by the application of a vertical (stabilizing) 
or horizontal (destabilizing) magnetic field. I n  addition, the application of a magnetic 
field H controls both the threshold of this instability and the geometric form of the 
instabilities above A%. 

1. Introduction 
The study of thermal convective instabilities in nematic liquid crystals has 

attracted interest over the last 10 years because of their unique characteristics; 
namely threshold values very different from those in the corresponding Rayleigh- 
BBnard (RB) instabilities of isotropic materials having similar average characteristics : 
instabilities under adverse temperature gradients (heating from above), control of 
thresholds and convective geometry by external electric or magnetic fields, and 
overstable and inverted bifurcation in a geometry complementary to that discussed 
in the present paper. 

In uniaxial nematics, the orientation of the average molecular axis is defined by 
a director field n(r) (In(r)l = 1) .  Uniform alignment between parallel plates (I to z )  can 
be obtained by surface treatment of the inner faces of the cell. Planar (n I z )  and 
homeotropic (n ( 1  z )  configurations can be produced. The mechanism underlying the 
original properties of the linear instability modes is the following coupling (figure 1 )  : 
a director fluctuation Sn(r) induces a temperature fluctuation O(r) via a heat-focusing 
effect due to the anisotropy of the thermal diffusivity of the nematic ( K , , / K ~  FZ 1.3, 
where 1 )  and I refer to directions ofthe heat flux with respect t o n  (Vilanove et al. 1974) ; 
buoyancy forces and convective flow occur under the influence of the modification 
of the density p ( T )  (a  = ( -  l / p )  (ap/aT) > 0);  distortion of the director is induced 
by the shear gradients (the viscous coefficients a2 and a3 of the Leslie stress tensor, 
which control this coupling, are defined in the appendix). With certain combinations 
of signs of the coupling terms, the initial director fluctuation is reinforced by the above 
loop. The characteristic of the linear convective RB instability is strongly modified 
by the inclusion of the director fluctuation in the instability loop because the time 
constant to for the diffusive relaxation of the director fluctuation is long compared 
with those for the relaxation of heat and vorticity, t, and t v :  

to, t ,v = (D0,t.v q2)r1;  t o  9 tt  9 tv.  ( 1 )  
t Permanent address: Departemento de Fisica Fundamental, U.N.E.D., Apdo Correos 54487 

$ Also a t :  Laboratoire de Physique des Solides, Universitk Paris-Sud, 91405 Orsay. 
Madrid 3, Spain. 
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FIGURE 1. Schematic representation of the convective cell emphasizing the coupling leading to 
instability for an adverse temperature difference AT = T,-T, < 0. The fluctuation of the director 
6n(r) is represented hy the tilting of the double-arrow line ; the temperature fluctuation O(r) induced 
by 'heat focusing' is given by 0 and 0; buoyancy leads to the velocity field (u(r),O, w(r)).  The 
torque on the director created by the field is shown by curved arrows. 

q x n/d is the wavevector of the fluctuation in the plane of the cell, D, = K is the 
heat diffusivity, D, = q / p  is a kinematic viscosity term, Do = K / y  is a diffusivity 
for the director orientation ( K  is a Frank elasticity for the orientation of n, and y 
is a viscosity for its relaxation). 

The analysis has been developed theoretically for several configurations of n and 
VT, and has led to  predictions and experimental studies of: 

(i) Roll instabilities in planar nematics heated from below with a threshold 5 x 102 
smaller than in the RB isotropic case (Dubois-Violette 1971 ; Dubois-Violette, Guyon 
& Pieranski 1974). 

(ii) Two-dimensional (square) instability for homeotropic nematics heated from above 
with thresholds comparable to the planar case (Pieranski, Dubois-Violette & Guyon 
1973). 

(iii) Oscillating instabilities for homeotropic nematics heated from below with 
isotropic-like values of threshold (Lekkerkerker 1977 ; Guyon, Pieranski & Salan 
1979). In  this problem, the stabilizing role of the director fluctuations is suppressed 
by the existence of an oscillation a t  a frequency - t;' ( $  t;l; the velocity relaxes 
faster than heat in nematics (tt $ tv) and follows O(r)). However the application of 
a magnetic field along (+  ) (at  right-angles ( - ) )  the orientation a t  rest leads to  a 
decrease (increase) of to given by 

and leads in particular to a qualitative change of the nature of the instability when 
t,l(H) > t;' (Guyon et al. 1979). 

I n  ( 2 )  the divergence of to for a large-enough field 

corresponds to the Freedericksz-Zocher (FZ) homogeneous instability of nematics 
under external fields (Deuling 1978); xa (> 0) is the anisotropic part of the 
susceptibility leading to alignment of nematics along H. Thus magnetic fields can 
control the threshold value, the instability mechanism, and the geometry of the 
instability pattern, which depends on n. 
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The present article is a detailed study of such effects for homeotropic nematics 
heated from above (ii) .  The case of homeotropic materials heated from below (iii) was 
discussed by Guyon et al. (1979, hereinafter referred to as I). 

2. Experimental 
The experimental set-up was described in I. The inner faces of the transparent 

sapphire circular disks forming the walls of the horizontal cell (S  on figure 1 )  have 
been coated with lecithin, which ensures homeotropic alignment of the nematic held 
between the disks. The material used is MBBA (methoxybenzylidene p - ( n -  
butyl)aniline), which is nematic between 19 and 45 O C .  Homogeneity of orientation 
is controlled by observing the homogeneity of the dark field across the cell between 
crossed polarizers. The cell is closed sideways by an insulating Teflon disk of inner 
diameter L = 52 mm, which also serves as a spacer. For the thicknesses used, d = 0 7 ,  
1 mm, the aspect ratio L l d  larger than 50 insures a good regularity of the convective 
structures in the central part of the cell. Water is circulated at  two different 
temperatures T,, T, on the outer faces of the disk and keeps the temperature difference 
AT = T,- T, ( < 0) stabilized within 0 0 1 ~ .  AT is read by a differential thermocouple 
whose ends are next to the outer faces. The temperature drop across the disks is 
estimated to be less than 3 %  of the total AT. The cell is surrounded with a coil of 
vertical axis and a horizontal-axis pair of Helmholtz coils, which provide magnetic 
fields up to 400 G of arbitrary direction. The value of the FZ critical field (3) ,  
H,  x 120, 80 G for d = 0.7, 1 mm, gives a natural scale for the aligning fields 
(h  = H / H , ) .  However, i t  is not determined accurately in such thick cells, and we will 
rather use a scaling field Ho ( -  H , )  defined in $3. 

The detection of convection makes use of the large birefringence that accompanies 
the periodic distortion of n above threshold A%. The temperature difference is 
changed by increasing T, by 0 1  O C  steps, keeping Tl = 20 O C  fixed. The time bctwccn 
steps is of several hours around threshold. Typically the growth time for the 
instability is measured by the larger value: toll -AT/Ac$l ,  where to is the relaxation 
time for the director ( 1 ) ;  to - lo3 s for d = 0.7 mm) and where the temperature- 
dependent factor shows a ' critical slowing-down ' effect associated with the direct 
birfurcation of the instability problem. In all the experiments reported, we have found 
no hysteresis in the value of the lowest instability threshold when increasing or 
decreasing AT, within the 0 1  *C accuracy of the experiments. It should be noted, 
however, that, even in such cases where an inverse bifurcation is expected, as in the 
BBnard-Marangoni (BM) experiment in isotropic fluids, hysteresis can be quite small 
and more easily detected from the value of the amplitude of the instability (Gerbaud 
1980). 

Direct study of the geometry is made from photographs of the pattern or from cin6 
pictures recorded a t  low speed (1 imagels). 

3. Theoretical predictions 
The different situations in thermal convective problems presented in 6 1 correspond 

to linear instability modes and can be solved using linearized solutions of the 
nematohydrodynamic equations found by Ericksen (1962) and Leslie (1968), which 
describe the coupling between the velocity field v(z, y, z ,  t )  and the nematic director 
n ( z , y , z , t ) .  These equations lead to the construction of appropriate forms for the 
Navier-Stokes equation, for the balance of the torques acting on n, and for the 
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heat-conduction equation, which, together with the continuity equation Vv = 0, 
completely determine n, v = (u,v,w), the local pressure p and the local temperature 
fluctuation 8. 

The problem of thermal instabilities in nematic liquid crystals has been treated in 
several instances after the initial approach of Dubois-Violette (1971) for a planar 
nematic heated from below. This work used a one-dimensional solution retaining 
only the effect of the vertical velocity component w and the dependences on the 
horizontal coordinate x. The effect of thickness is introduced by putting a value for 
the wavevector q2 = n/&. Such a simple approach provides an excellent description 
of the linear instability, consisting of parallel rolls perpendicular to x, and a 
reasonably good quantitative estimate for the threshold. This approach cannot be 
extended as such in the present problem sketched in figure 1 : the torque acting on 
the director and due to the gradient component aw/ax is stabilizing in most ncmatics 
(and in particular in MBBA) when a Leslie viscous coefficient a3 is negative. On the 
contrary, the gradient component au/az gives a contribution proportional to the Leslie 
coefficient a2 (l01.J $ la3]), in the direction of the curved arrow on the figure, which 
is the dominant torque. The distortion is such that i t  induces a heat-focusing effect 
that reinforces the initial velocity fluctuation in the ' instability loop ' presented in 
I. Thus the essential features of the nematic instability, coming from a gradient term 
d j d z ,  has to be described through a two-dimensional model. In  addition to the 
approximate solution given in the initial report on the instability by Pieranski et al. 
(1973), Dubois-Violette (1974) gave an exact numerical solution for both planar and 
homeotropic cases in quantitative agreement with experiment (threshold and 
wavevector a t  threshold) (also see Currie 1973). 

Barratt & Sloan (1976) also used the continuum theory of nematics to obtain an 
exact expression for determining the threshold in the two experimental situations. 
Their analysis agrees with the previous ones and also includes the effect of field along 
or at right angles with the unperturbed director. The problem was reconsidered by 
Gabay (1981), who produced numerical results for the effect of a magnetic field on 
threshold and wavevector in connection with the present experiments. 

In  the dimensionless parameters introduced by Barratt & Sloan, the field H only 
enters in combinations of the form IKq: k xa H21 for H perpendicular ( - ) or parallel 
(+ ) to n, which, divided by the torque viscosity, gives the form of the natural 
relaxation rate of the director 7 i 1 ( H ) .  

I n  Gabay's (1981) work, an effective elastic constant K(q,)  is introduced such that 

which expresses the addition of the effect of splay elasticity K ,  of the director along 
x and the bend elasticity K3 across the thickness of the film d.  The Frcedericksz limit 
is obtained as a softening of the elasticity ( K ( q , )  + 0) in the presence of a destabilizing 
field i - 1 for a critical field 

and a homogeneous distortion qz = 0. I n  this limit AT!(Hc3)  = 0 .  
On the other hand for small fields ( H  4 Hc3) ,  the value of the threshold AT,(H)  can 

be obtained from that in zero field AT,(0) by using a simple analysis in terms of the 
time constants as done in particular by Guyon & Pieranski (1973). As the orientation 
is the slow relaxing variable, we expect AT,  to vary at t i ' ,  where to is obtained from 
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an expression analogous to (1) : 
1 - K(p,)d to - 

Y1 

This leads to 

with 

The decrease of AT,(H) due to a destablizing horizontal field has been calculated 
by Gabay (1981), and is given in figure 2. It clearly shows the difference between H,, 

H; (X 10-4)  ( G Z )  

FIGURE 2. Variation of threshold with horizontal magnetic field H ,  (theory). The calculation was 
made with the parameters of MBBA for a film thickness d = 1 mm. 

which includes both splay and bend distortions near threshold, and the homogeneous 
limit H = Hc3.  Owing to the different weight given to the factors K ,  and K ,  for 
different values of fields, i t  is not possible to obtain a dimensionless form of the ATc(H) 
field. The rapid variation of AT,(H) near Hc3 is closely connected with that of the 
reduced wavevector q x  d / r  near the threshold of the Freedericksz transition given 
in figure 3. 

On the other hand, in a stabilizing field ( H  along n) the increase of wave vector 
q x d / n  with field, as the threshold AT,(H) increases, is more limited, as indicated from 
the result of figure 4. 

4. Convective thresholds and geometry 
I n  this section, we describe the experimental results a t  and near the lowest 

instability threshold for various magnetic-field situations and for two different 
thicknesses d = 0.7, 1 mm. 



18 

I 1 

1 T 

, 

J .  Salan and E .  Guyon 

0.5 - 

I I 1 1 I 

4.1. Results in the absence of jields 
The critical thresholds for both thicknesses are as follows : 

( -5.3' (d  = 1 mm), e w  = 
1-15.5' ( d = 0 . 7 m m ) ;  

- 5 O  ( d =  1 mm), 
-14.6' (d  = 0.7 mm). 

AP," zz 
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The theoretical result AT;h was obtained from the two-dimensional analysis of 
Dubois-Violette (1974) and that of Barratt & Sloan (1976). It is in remarkable 
agreement with experiments, considering the accuracy on the material parameters 
for the MBBA used (the source of data is the same as in I). 

between the AT,s, the geometry of the 
structure is different for both thicknesses. For the thicker film, i t  consists of a square 
pattern resulting from crossed rolls. A photograph of the pattern and an analysis of 
it were given in figure 1 of Pieranski et al. (1973) for a film of the same thickness 
and will not be reproduced here. Parallel rolls are often seen as transient structures 
in the establishment of the squares. Such a square geometry is compatible with a direct 
bifurcation by symmetry arguments (Busse 1978). 

Besides the expected correspondence as 

FIGURE 5 .  Convective pattern a t  threshold for a large temperature difference ATc = 16'. 

On the other hand, for the thinner film (d  = 0 7  mm) the convective pattern a t  
threshold is made of hexagons, as shown in figure 5. It is similar to that obtained in 
the BM thermal instability driven by surface-tension gradients in fluids having an 
upper free surface (Pearson 1958; Gerbaud 1980). Hexagons were also obtained when 
non-Boussinesq effects due to the variation of material parameters across the surface 
layer were important (a recent theoretical work containing references to experiments 
is Sazontov 1980). Quite generally such hexagons indicate a vertical asymmetry in 
the system, as shown by Palm, Ellingsen & Gjevik (1967), and discussed in detail by 
Busse (1978). In  nematic MBBA, there is a rapid variation of viscosity coefficients 
with T ,  especially near the transition to the isotropic phase: the ratio of the three 
Miesowicz shear viscosities for MBBA between 37O and 21 O C  is 0.5 & 005  (Gahwiller 
1973). It is also nearly the value for the twist viscosity y (Prost & Gasparoux 1971). 
Similar variations are obtained for the other parameters that enter in the form of 
A C ,  It is thus reasonable to assume that i t  is this variation that causes the asymmetry 
of the hexagonal patterns, with hot fluid rising in the central part of the cell (see figure 
7). 

4.2. Vertical applied Jield 

The experimental increase of threshold with the value of the stabilizing field H,  is 
plotted in figure 6 for the two thicknesses d = 0.7 and 1 mm. The value of the 
normalizing field H, has been adjusted in each case to fit the simple theoretical 
quadratic result given by ( 6 ) ;  AT,(H) has been normalized to the above values AT,(O) 
in zero field. We note an excellent agreement, beyond the expected range of validity 
of the formula! In  particular, the the value of H,, is close to that which is deduced 
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FIQURE 6. Variation of threshold in a vertical applied field for two thicknesses d = 0 7  mm (0) and 
1 mm (+). The values of H,, have been adjusted to give the best fit with the theoretical straight 
line (6): Ho = 130 and 85 G. 

from the calculated value of Hc3 ((5), the bend constant) and the correcting factor, 
given in (7) ,  H;/HE3 - 1.15, which takes into account the splay elasticity K ,  in the 
plane of the film when convection takes place. Experiments on thicker (d = 5 mm) 
films showed that the quadratic behaviour in the field extends to much larger field 
ratios h - 8 (I, figure 2). 

Several convective geometries are observed a t  threshold on the thicker film 
d = 1 mm, depending on the value of A T c ( H ) :  as long as AT'(H) is smaller than 16 O C ,  

the pattern a t  threshold is made of squares as for H = 0. There is not much change 
in the wavelength. This is not inconsistent with the calculation of Gabay (1981) 
sketched in figure 4 because the field is restricted to a value H I H ,  < 2 in the 
experiment. 

For larger values of ATc(H)  the pattern a t  threshold is made of hexagons. This result 
is to be compared with that obtained in $4.1 for a thinner film with d = 0 7  mm 
and H = 0. 

The fact that the value ATc where the change between squares and hexagons takes 
place is the same in both experiments (despite the different conditions) is a strong 
indication that the non-Boussinesq character plays an essential role. 

For an even larger field (and A T c ( H ) ) ,  the isotropic transition TNI is reached at 
the upper plate. A typical pattern observed in such conditions is shown in figure 7 .  
The sharp hexagonal lines are the isotherms T = TNI at the level of the upper plate, 
separating the inner part in the isotropic state (at a temperature T > TNI), the outer 
one still being in the nematic state. The structure grows from normal spots at thc 
centre of the hexagons (showing indeed that warmer fluid climbs in the central region 
of lower viscosity, as expected from the non-Boussinesq mechanism). It develops up 
to thc point where the hexagonal borders merge into a continuous surface. 

For even larger gradients, the nematic phase is separated from the upper plate by 
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FIQURE 7. Hexagonal convective pattern when the temperature of the upper plate reaches that 
of the transition to isotropic phase TNI. The inner part of the hexagons is in the isotropic state, 
and the border lines are the isotherms T = TNI. 

FIQURE 8. Roll structure obtained where a n  isotropic layer exists below the upper plate 
at a temperature T, 2 TNI (> TO. 

a complete isotropic layer. The static properties of this interface have been studied 
in particular by Vilanove et al. (1974) and involve a radical change in the boundary 
condition on n. Quite surprisingly, we have found that the hexagonal convective 
pattern is no longer the stable solution a t  threshold in such a case but is replaced 
by rolls. An observed pattern is shown on figure 8. There is no preferred direction 
in the plane of the layer, and rolls tend to align normal to the boundaries, as is also 
found in Rayleigh-BBnard experiments (Storck & Muller 1975). Defects must be 
created in the central part of the eel1 in such a circular geometry as observed here. 
(Let us also note that, in the case of square convection obtained in zero field, the 
sriiatures also tend to adiust to be perpendicular to the outer walls.) 
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FIGURE 9. Decrease of threshold with horizontal applied field (experimental) for two thicknesses 
d = 0.7 mm (0) and 1 mm (two samples 0 and 0).  The straight lines give determinations of 
Ho = 136 and 92 G. The dotted line is the theoretical curve of figure 2. The inaccurately determined 
thresholds Hc3 are indicated by a double horizontal line 

The study of convective instabilities with interfaces is a subject that deserves a 
particular attention because it is a rare experimental case where convection can be 
produced between two liquid phases of the same material separated by a first-order 
transition line. This is also a subject of geophysical interest (Fitzjarrald 1981). 

4.3. With horizontal jield 

Two kinds of effects are expected from theoretical work of Gabay (1981), as well as 
our analysis in $3, from the application of a horizontal field H,. 

(i) The threshold AT,(H,) is reduced below the value for H ,  = 0 as expected from 
the analysis leading to (6). This can be understood in terms of the increase of the 
relaxation time constant to (see(2)) when the destabilizing field H ,  increases. The limit 
to1 = 0 corresponds to the Freedericksz threshold H,, (for the bend distortion K,). 

(ii) Geometry. I n  zero field, the axes of the square pattern are not defined in this 
isotropic geometry. For small fields H,, the orientational degeneracy leading to 
squares is removed, and rolls perpendicular to the field are preferred : in such a case 
the distortion of n takes place in the vertical plane containing n. Rolls not 
perpendicular to H would lead to additional magnetic energy on n(r). For H 5 HC3,  
the wavelength of rolls must be large, as it should extrapolate to q, = 0 for H = Hc3,  
the FZ instability being a homogeneous distortion in the plane of the film. 

The experiments fully confirm these predictions. 
The threshold values are plotted in figure 9, and show the initial decrease with field 

predicted by (6). The extrapolation of the straight lines to ATc = 0 lead to values of 
Ho = 136 G and 92 G for d = 0.7 and 1 mm, which are consistent with those used in 
the normalization of figure 5 (130 and 85 G ) ,  as expected from theory. However, for 
larger fields the variation bends over and extrapolates to the value H,, smaller than 
H,,. The shape is to be compared with the theoretical one of figure 2. 

The variation is to be analysed in conjunction with that of the wavevector q,, given 
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FIGURE 10. Variation of the wave vector qz = 2n/h, of rolls in the presence of horizontal field for 
the two thicknesses d = 1 mm (0) and 0 7  mm (+ ) .  The determination made from photographs 
is rather inaccurate, but  shows qualitatively the continuous decrease of qs t o  the homogeneous 
transition a t  Hc3.  

theoretically in figure 3 and obtained from the experimental photographs in 
figure 10. There is a rather sharp decrease of q, with field H,. When H ,  approaches 
Hc3, the distortion in the plane of the film becomes negligible with respect to that 
across the thickness. This reduces the elastic contribution of the theoretical analysis 
given in (7),  which included both bend across the film and splay in the plane in low 
field, to the simple form (2) (with the single bend constant K,) next to Hc3.  The 
sharpness of the decrease of AT,(H,) follows that of q2. The discussion also indicates 
that, owing to the different field values that enter in the two regimes of the curve, 
one cannot use in principle normalized field units to describe the theoretical variation. 
However, in practice K,  - K3 in many systems, and normalized field axes can then 
be used. 

The behaviour around the critical point ATc = 0, H = H,, indicates an original 
transition from a dynamic bifurcation (characteristic of a dissipative system like the 
Rayleigh-BBnard problem) to a bifurcation of thermodynamic nature, i.e. one that 
can be obtained from the minimization of a free energy, the FZ problem. 

The low-field behaviour is helpful in discussing the square -, roll transition. 
Experimentally such a transition is obtained reversibly without any apparent 
discontinuity of the threshold value as soon as we apply a small field H,. The linear 
solution obtained in both cases consists of rolls, and is not expected to show any 
discontinuous behaviour with the application of fields ; only nonlinear terms can tell 
if the interaction of rolls of different directions lead to squares or not. A particular 
aspect of convective problems in a degenerate geometry (as for H ,  = 0) is the so-called 
' Brazovski effect '. The initial invariance of the system with respect to rotations about 
the z-axis causes fluctuations of the periodic structure to induce a first-order 
transition (inverse bifurcation) (Walgraef, Dewell & Borckmans 1981 ; Gabay 1981). 
The thresholds of various convective solutions (rolls, squares, hexagons, . . . ) can be 
calculated, but they lie too close to one another to lead to measurable experimental 
differences so far. 
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FIGURE 1 1 .  Diagram showing the range of stability of squares (S) (o), hexagons (H) (X) and of 
the disorganized structure (0) for a d = 1 mm film in a vertical field H,. The threshold straight 
line corresponds to the normalized variation of figure 6. The S-H transition is ill-defined for low 
fields, where intermediate structures are met. This is not so for large fields. 

5.  Supercritical behaviour 
Owing to the complexity of the theoretical descriptions, we only present, in a 

schematic form, the development of the instability pattern above threshold. This 
may be worthwhile in view of the present interest in studying convective geometries : 
defects (Guazzelli, Guyon & Wesfreid 1981) and phonons (Wesfreid & Croquette 1980). 

The phase diagram of figure 11 shows the nature of the structures obtained in the 
thicker (d  = 1 mm) cell in stabilizing field H,. For small-enough fields the linear 
transition, discussed in $3,  leads to a square (S) pattern over a finite range of AT. 
A second transition to hexagons (H) takes place for larger gradients. The border line 
S-H extrapolates in increasing fields to the critical value AT,(H,) z L B O  that  
separates the transition to squares from the direct one to hexagons. In  the other 
direction (H ,  -+ 0) the borderline is not so sharply defined, and intermediate 
structures are observed over a finite range of AT. Above the S-H transition, another 
line is met, which corresponds to the disorganization of the hexagons. Such ‘melting’ 
has been observed and analysed in recent work on various systems (Guazzelli & Guyon 
1981), and connected with the idea of phase turbulence introduced by Pomeau & 
Manneville (1979). 

The disorganization of the structures has been followed from a slow-speed cini. film, 
and showed in particular the rolc of pairs of pentagons and heptagons in the 
dissociation process by dislocation melting (Toner & Nelson 1981). These effects are 
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compared and analysed, together with other instabilities where similar disorganization 
takes place, Pantaloni et al. (1980). I n  the B M  structures reported there, an overall 
rotation of the convective pattern was observed, which was tentatively connected 
with an Earth Coriolis effect (for a small Rossby number Ro = v/CZd, v being the 
convective velocity). I n  our experiment we have seen no such rotation. However, in 
the present case, the time constant for the relaxation of the structure is controlled 
by the diffusivity Do acting on an horizontal scale of the cell L.  This is much larger 
than the period of rotation of the Earth. An inequality of opposite sign is obtained 
in the B M  problem, which allows for a movement of the total convective pattern in 
response to  the Coriolis force acting on the convective flow. 

We have greatly benefited from several discussions with M. Gabay and from 
communications of the results of his thkse de doctorat d’Etat; E. Dubois-Violette has 
largely contributed to  theoretical understanding of this problem as well as in the 
preparation of the manuscript. 

The contribution of M. Rachmanidou in the experiments above threshold is 
acknowledged. We have had discussions with E. Wesfreid, E .  Guazzelli and 
Y. Pomeau on various parts of the work. One of us (J.S.) acknowledges partial 
support from D. Stiftung Volkswagenwerk. 
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